hexway

Apple bleee. Everyone knows What
Happens on Your iPhone

N AT DY ..coreeeeeeeeeaeeseeesseeseetssees e et s s s s bR R £ SRR AR AR AR AR R AR ER R R R 4
WI-Fi PASSWOTA SHATIIIG .. ieuieeeeeeteeeseesseessessssessessssesssessssssssessssesssesssse s sss s s s s s b s s b 5
0 6 o) o TSP 9
01 4 1) PPN 13
2 1016 () PPN 13
0 010 6 F 3OO 13
LT S T 00 ¥ T 13
3 (0 010) P 13
0L 8 14

In this article, we will outline our research process, from our initial ideas to first POCs.
Technical specialists may find this interesting.

What if...

Let’s take a look at the BLE traffic. For this purpose, we’ve slightly modified the scripts
from py-bluetooth-utils repository’

Unlock the phone and run the BLE sniffer.

python ble adv_search.py -m 54:69:F1:23:2B:47

[54:69:F1:23:2B:47] 0e02011a0aff4c0010050blcOfc556
[54:69:F1:23:2B:47] 0e02011a0aff4c0010050blcOfc556
[54:69:F1:23:2B:47] 0e02011a0aff4c0010050blcOfc556
[54:69:F1:23:2B:47] 0e02011a0aff4c0010050blcOfc556
[54:69:F1:23:2B:47] 0e02011a0aff4c0010050blcOfc556
[54:69:F1:23:2B:47] 0e02011a0aff4c0010050blcOfc556
[54:69:F1:23:2B:47] 0e02011a0aff4c0010050blcOfc556
[54:69:F1:23:2B:47] 0e02011a0aff4c0010050blcOfc556
[54:69:F1:23:2B:47] 0e02011a0aff4c0010050blcOfc556
[54:69:F1:23:2B:47] 0e02011a0aff4c0010050blcOfc556
[54:69:F1:23:2B:47] 0e02011a0aff4c0010050blcOfc556
[54:69:F1:23:2B:47] 0e02011a0aff4c0010050blcOfc556
[54:69:F1:23:2B:47] 0e02011a0aff4c0010050blcOfc556

[54:69:F1:23:2B:47] 0e02011a0aff4c0010050blcOfc556
[54:69:F1:23:2B:47] 0e02011a0aff4c0010050blcOfc556

Turn the phone off.

[54:69:F1:23:2B:47] 0e02011a0aff4c0010050blcOfc556
[54:69:F1:23:2B:47] 0e02011a0aff4c0010050blcOfc556
[54:69:F1:23:2B:47] 0e02011a0aff4c001005031cOfc556
[54:69:F1:23:2B:47] 0e02011a0aff4c001005031cOfc556
[54:69:F1:23:2B:47] 0e02011a0aff4c001005031cOfc556
[54:69:F1:23:2B:47] 0e02011a0aff4c001005031cOfc556

We can see that only one byte reflects the change in screen status. Apple uses ADV_IND
messages to send out current status data.

That’s the structure of a typical advertise data packet:

e ———————————————— e ———————————————— +
| | I
| Header | |
I I I
e ———————— + |
| I
| Advertising Address |
I I
e ————— e ———— +
I I I
| Length/Type(@x0@1) /Flags | Length |
| I I
o ————————— e ———————————_—_—— +
I I I I
| Type(@xFF) | Company ID(@x@04c) | Message type |
| | | nearby/airdrop|
e e e ————————————— e ———————— +
| | I
|Message Length | Message data |
I I I
e ———————————— R e ————————— +

Turning the phone on and off, navigating the menu, changing settings and running different
apps (phone, calendar, photos, settings), we've identified the fields responsible for the Wi-
Fi and buffer status and several types of BLE messages.

0x05 - Airdrop

0x07 - Airpods

0x10 - Nearby

0x0b - Watch Connection
0x0c - Handoff

0x0d - Wi-Fi Settings
Ox0e - Hotspot

0x0f - Wi-Fi Join Network

Nearby

That’s a Nearby message:

where status can be:

Ox0b - Home screen
Ox1lc - Home screen
0x1lb - Home screen
0x11l - Home screen

0x03 - Off
ox18 - Off
0x09 - Off
ox13 - Off
Ox0a - Off
Oxla - Off
ox01 - Off

0x07 - Lock screen
0x17 - Lock screen
OxPe - Calling
Ox5b - Home screen
ox5a - Off

That’s enough to write a simple packet analyzer that allows us to get data from all nearby
Apple devices in real-time.

Apple devices scanner

State Device

1563353463
1563353463
1563353463
1563353453
1563353463
1563353463
1563353463

Video Demo:
https://www.youtube.com/watch?v=Bi602yAIBAw

To analyze the BLE packets further, we chose to use Adafruit Bluefruit LE Sniffer that helps
analyze the Wireshark BLE traffic.

Wi-Fi password sharing

Then, we analized how users are identified when two devices interact. This process is used
for conencting to Wi-Fi.

[19:12] aiUE .

Enter the password for “hexway"”

Cancel Enter Password

Password

® Passwords
gwer r t vy ui op
alsldlfiglhlijlk]!
B z | xlclvibinim| K

123 space Join

@

While trying to connect to a network, the device sends the following BLE packet:

€030801c5563125c9d087555a77e3e2005110020b0C

Trying to connect to various SSID on different devices (yes, we could’ve just reversed
sharingd in IDA/radare/gydra) we found out that this message has the following format:

| flags | type | auth tag
| | (exes) |

D D

As you can see, the device sends the first 3 bytes of the SHA256 hash of phone
number/email/appleID sha256(phone _number)[0:3]

Probably, devices hash all contacts and then compare them to the values from BLE
messages, and in case there is a match offer to share the Wi-Fi password (if they have it, of
course). We'll look into this process in more detail in the following articles. What we tried
to do here is to recover a phone number from those 3 bytes of the hash.

First, we have to understand phone number formats. E. 164 is a recommendation
describing various formats.

e A phone number can have a maximum of 15 digits
e And it can be divided into:

1. Country code (1-3 digits)
2. National destination code (NDC)
3. Subscriber number

Of course, formats vary with country, but the idea is the same. So, we can calculate the
values of SHA256 for the numbers of a particular city.

<sha256[0:3]>:<phone_number>

We made a table of phone numbers for a city with a population of about 5 000 000.
Considering the large number of subscribers, collisions are inevitable. In average, we have
a collision of 10-15 numbers for 3 bytes of hash.

We made an API for quick requests to the table to get a number from a hash:

&€ > C ® NotSecure | ™33 ¥&3]/map_hash_num.php?hash=112233

{"candidates":["~3% «54996"," ¥t F.oTR2T" " iK A2 "8994"," %, (S N%a194" " WY, JTKOT2"," NP SW369" " i8] #628" "TaY a3 797"],"time":0.0256350040435791}

There are two approaches to ensuring the accuracy of identification:

1. HLR (Home Location Register) Lookup that allows identifying inactive subscribers and
subscribers from other regions

2. A number must be associated with an ApplelD, so we can identify valid numbers by
checking if iMessage is available for a certain number (we'll talk about this approach in
more details in the future articles).

Combining these two approaches, we can accurately identify a phone number in almost
100% of cases.

Can we activate the Wi-Fi password sharing popup on a device? That’s an open issue.

Incorrect Wi-Fi Password

Enter the password for
i,

Cancel

g h

cC'v. b nm x

space return

Thus, we have a script that identifies the users connected to Wi-Fi.
https://www.youtube.com/watch?v=kTtNX5Tmk3Q

Moreover, we can send BLE requests for a Wi-Fi password hoping that the victim will
provide us, for example, with a corporate network password. We’ll talk about this vector
more in our other articles as well. By the way, you can use an Android app (like nRF
Connect) to clone and repeat different BLE messages.

40% 19:06

Devices VA
SCANNER BONDED ADVERTISER
o N/A - copy
RANDOM ADDRESS &
CONNECTABLE 47dBm ©250ms

Device type: LE only

Advertising type: Legacy

Flags: GeneralDiscoverable, [Device specific]
Manufacturer data (Bluetooth Core 4.1):
Company: Apple, Inc. <0x004C>
0x0F11C0086258BE3125C9D087555A77E359
AD1B10020B0C

CLONE EDIT
N/A - copy

RANDOM ADDRESS A
CONNECTABLE A-7dBm ©250ms

Q

N/A - copy
RANDOM ADDRESS A

CONNECTABLE A-7 dBm e‘

N/A - copy

Q

Airdrop

Let’s see if this mechanism of identifying users for the purpose of sharing Wi-Fi passwords
is universal. Apple Airdrop is one of the points we can investigate, as it has 3 privacy
options:

1. Receiving Off
2. Contacts Only
3. Everyone

So, how do devices identify each other?

14:29 all T @m)

Cancel 1 Photo Selected

AN LW

g

AirDrop. Share instantly with people nearby. If they

@ turn on AirDrop from Control Centre on iOS or from
Finder on the Mac, you'll see their names here. Just
tap to share.

@)= an] o>

Message Mail Add to Notes S L Bear
to Books

P ® o » B

Copy iCloud

Link Slideshow Add to Alt

Copy Print

We run Airdrop and follow the BLE sniffer:

000000000000000001123412341234123400

8 9 11 13 15 17 18
———————————— e T e . S —— e ————_—

| | | | | | |

|st(@x01) | sha(AppleID) | sha(phone) | sha(email) | sha(email2) | zero |

| | | | I | |
———————————— Lt S B S ettt

As you can see, in this case, devices sends only 2 bytes of the SHA256 hash, which is enough
to identify the phone number. Traffic analysis showed that BLE is only used to initiate
AirDrop transfer. The transfer itself happens via Wi-Fi using the AWDL technology that
establishes a peer2peer connection between the server (receiver) and the client (sender).
To analyze the AWDL packets, we can use Wireshark and the awd10 interface available on

all devices.

Capturing from awdIO

=3 -] Expression.. +

AW a4 R QeadEF I = QQAQE
[WTApply a display filter ... <8/>
Interface Device & Passkey / OOB key Adv Hop Help
No. Time Source Destination Protocol uTF8String
1 0.000000 ::5403:92ff: feb1:858d
2 0.538514 fe80::b077:d4ff: feca:b3f0 ffo2::fb MDNS 184
3 0.538522 fe80::b077:d4ff: feca:b3fo ffo2::fb MDNS 139
4 0.538525 fe80::b077:d4ff:feca:b3f0 ff02::fb MDNS 178
5 0.538527 fe80::b077:d4ff: feca:b3fo ff02::fb MDNS 128
6 0.546228 fe80::8827:23ff: fe4f:7a0c ff02::fb MDNS 179
7 0.546243 fe80::8827:23ff: fedf:7a0c ff02::fb MDNS 139
8 0.546247 fe80::8827:23ff: fe4f:7a0c ffo2::fb MDNS 173
9 0.546251 fe80::8827:23ff: fe4f:7a0c ff02::fb MDNS 128
12 0.644979 fe80::145b:2aff: feb8:1929 fe80::5403:92ff: febl:858d TCP 86
13 0.645015 fe80::145b:2aff: feb8:1929 fe80::5403:92ff: feb1:858d TLSv1 329
14 0.645303 fe80::5403:92ff: feb1:858d fe80::145b:2aff: feb8:1929 TCP 86
15 0.645305 fe80::5403:92ff: feb1:858d fe80::145b:2aff: feb8:1929 TCP 86
16 1.001762 fe80::5403:92ff: febl:858d ff02::fb MDNS 275

>
>
>
>

» Multicast Domain Name System (response)

0000 33 33 00 00 00 fb 56 03 92 bl 85 8d 86 dd 60 Oe
0010 92 e7 @0 dd 11 ff fe 80 00 00 00 00 00 00 54 03
0020 92 ff fe bl 85 8d ff 02 00 00 00 00 00 00 00 00
0030 00 00 00 00 00 fb 14 €9 14 e9 00 dd 4b f9 00 00
0040 84 00 00 00 00 04 00 00 00 03 Oc 32 34 34 30 31
0050 32 65 31 39 65 39 62 08 5f 61 69 72 64 72 6T 70
0060 04 5f 74 63 70 05 6¢c 6f 63 61 6C 00 00 21 80 01
0070 00 00 00 78 00 Of 00 00 00 00 22 42 06 63 68 69
0080 70 69 6b co 27 c@ Oc 00 10 80 01 00 60 11 94 00
0090 @a 09 66 6¢c 61 67 73 3d 35 30 37 09 5f 73 65 72

33V et

2e19e9b- _airdrop
«_tcprlo cal !
ceexscee - "Bochi

pik-'ooo oo
- -flags= 507 _ser

Frame 1: 275 bytes on wire (2200 bits), 275 bytes captured (2200 bits) on interface 0
Ethernet II, Src: 56:03:92:b1:85:8d (56:03:92:b1:85:8d), Dst: IPvémcast_fb (33:33:00:00:00:fb)
Internet Protocol Version 6, Src: fe80::5403:92ff:feb1:858d, Dst: ff@2::fb
User Datagram Protocol, Src Port: 5353, Dst Port: 5353

As you see, after sending a few MDNS packets, the devices exchange their certificates and
then use the secure TLS connection for data transfer. We were about to begin the reverse
engineering of the sharingd app, which is responsible for AirDrop, when people from
Technische Universitat Darmstadt released a white papper A Billion Open Interfaces for
Eve and Mallory: MitM, DoS, and Tracking Attacks on i0OS and macOS Through Apple
Wireless Direct Link about AirDrop (sadface.png). This white paper beautifully describes
the functioning of AirDrop. Now, we’ll take a brief look at the AirDrop protocol workflow:

Sender

Receiver

(1) DISCOVERY

All subsequent

(1a) AirDrop BLE advertisement

with short contact hashes

__ (1b) AWDL synchronization

regularly
perform
BLE scans

if in everyone

| mode or contact

[els ication > mods <o
ash matches,
e AP activate AWDL
Service discovery 1c) Ask for service dirDrop
via mDNS .
Service available at
< instance 1fa518393a98 PTR
Instance Ifa518393a98 is at
< Janes-iPhone.local:8770 SRV
IP address of Janes-iPhone.local
< is /e80::90b6: /ff-fecc:46 AAAA
For every service . . . (2) AUTHENTI-
discovered, start |< Establish TLS connection with CATION

HTTPS discovery

Receiver appears
in sharing pane
(with contact
photo if record
data is valid)

" client and server certificates

HTTP POST /Discover

with sender’s record data
HTTP 200 OK

with receiver’s record data

TLS teardown

if record data is
valid, include
own record data
in response

Select receiver
L}

Start file transfer
if accepted (200)

_Establish TLS connection with

" client and server certificates
HTTP POST /Ask

with sender’s record data
HTTP 200 OK

-

HTTP POST /Upload

with file
HTTP 200 OK

TLS teardown

ol = 9:

Cancel

1Photo Selected

© with AirDroj
Megan
Megan's IPho... C

o
@ Decline
]

Olivia
a's IF

(3) DATA
TRANSFER

Prompt to
decide whether
to accept file

|

I
I
I
I
I
I

A4

AirDrop
“Derek Parker” would like to share

Accept

During authentication, the device sends its identification data (sender’s record data), that
contains the full SHA256 hash of the phone number. Thus, if we answer all Airdrop BLE
requests, we’ll get the sender’s contact data, including phone number hash.

We've slightly modified the opendrop utility to do that.
Here are the results:

https://www.youtube.com/watch?v=mREleH_s3z8

Others

Below, you can see various BLE message formats that we encountered during our research.

Handoff

0 1 3

m———————— e ———————————— e ———————————————————————— K

I I |

|clipbrd | seq.nmbr | encr.data

I I |

m———————— e ——————————— e ————————————————————————— -
Airpods
0 5 4 5 6 7 9 2
| | | | | | | |
| some |statel |state2 | datal | data2 | data3 | datad |
1 DI D R ' I

By sending this message, we can make Apple devices display AirPods inforamtion as if they
were connected. Just watch this funny video:

https://www.youtube.com /watch?v=HoSuLUtrkXo

Wi-Fi settings
0 4
e K
I I
| iCloud ID |
I I
e K
Hotspot
0 2 3 4 5 6
B e ————— o ———————— o ————————— o ———————— o ————————— +
| I I I I I
| datal | battery | dataz2 |cell serv | cell bars |
| | | | | |
B e ——— B ————— o ————————— o ———————— o ————————— +

PoCs

You can find all scripts in our GitHub repository: Apple bleee

Links

https://github.com/hexway/apple_bleee
https://hexway.io/blog/apple-bleee/
https://arxiv.org/pdf/1904.10600.pdf
https://www.usenix.org/system/files/sec19fall_stute prepub.pdf
https://www.apple.com/business/site/docs/iOS_Security Guide.pdf

Contact us:
contact@hexway.io

https://hexway.io

