
	

Apple bleee. Everyone knows What
Happens on Your iPhone
	 	

	

What	if…	..3	
Nearby	..4	
Wi-Fi	password	sharing	...5	
Airdrop	...9	
Others	..	13	
Handoff	..	13	
Airpods	...	13	
Wi-Fi	settings	..	13	
Hotspot	..	13	

PoCs	..	14	
Links	...	14	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

In	this	article,	we	will	outline	our	research	process,	from	our	initial	ideas	to	first	POCs.	
Technical	specialists	may	find	this	interesting.	

What if…
Let’s	take	a	look	at	the	BLE	traffic.	For	this	purpose,	we’ve	slightly	modified	the	scripts	
from	py-bluetooth-utils	repository’	

Unlock	the	phone	and	run	the	BLE	sniffer.	

python ble_adv_search.py -m 54:69:F1:23:2B:47	
[54:69:F1:23:2B:47] 0e02011a0aff4c0010050b1c0fc556	
[54:69:F1:23:2B:47] 0e02011a0aff4c0010050b1c0fc556	
[54:69:F1:23:2B:47] 0e02011a0aff4c0010050b1c0fc556	
[54:69:F1:23:2B:47] 0e02011a0aff4c0010050b1c0fc556	
[54:69:F1:23:2B:47] 0e02011a0aff4c0010050b1c0fc556	
[54:69:F1:23:2B:47] 0e02011a0aff4c0010050b1c0fc556	
[54:69:F1:23:2B:47] 0e02011a0aff4c0010050b1c0fc556	
[54:69:F1:23:2B:47] 0e02011a0aff4c0010050b1c0fc556	
[54:69:F1:23:2B:47] 0e02011a0aff4c0010050b1c0fc556	
[54:69:F1:23:2B:47] 0e02011a0aff4c0010050b1c0fc556	
[54:69:F1:23:2B:47] 0e02011a0aff4c0010050b1c0fc556	
[54:69:F1:23:2B:47] 0e02011a0aff4c0010050b1c0fc556	
[54:69:F1:23:2B:47] 0e02011a0aff4c0010050b1c0fc556	
...	
[54:69:F1:23:2B:47] 0e02011a0aff4c0010050b1c0fc556	
[54:69:F1:23:2B:47] 0e02011a0aff4c0010050b1c0fc556	
...	

Turn	the	phone	off.	

...	
[54:69:F1:23:2B:47] 0e02011a0aff4c0010050b1c0fc556	
[54:69:F1:23:2B:47] 0e02011a0aff4c0010050b1c0fc556	
[54:69:F1:23:2B:47] 0e02011a0aff4c001005031c0fc556	
[54:69:F1:23:2B:47] 0e02011a0aff4c001005031c0fc556	
[54:69:F1:23:2B:47] 0e02011a0aff4c001005031c0fc556	
[54:69:F1:23:2B:47] 0e02011a0aff4c001005031c0fc556	
...	

We	can	see	that	only	one	byte	reflects	the	change	in	screen	status.	Apple	uses	ADV_IND	
messages	to	send	out	current	status	data.	

That’s	the	structure	of	a	typical	advertise	data	packet:	

	

	

	

	

	

Turning	the	phone	on	and	off,	navigating	the	menu,	changing	settings	and	running	different	
apps	(phone,	calendar,	photos,	settings),	we’ve	identified	the	fields	responsible	for	the	Wi-
Fi	and	buffer	status	and	several	types	of	BLE	messages.	

0x05 - Airdrop	
0x07 - Airpods	
0x10 - Nearby	
0x0b - Watch Connection	
0x0c - Handoff	
0x0d - Wi-Fi Settings	
0x0e - Hotspot	
0x0f - Wi-Fi Join Network	

Nearby
That’s	a	Nearby	message:	

	

	

where	status	can	be:	

0x0b - Home screen	
0x1c - Home screen	
0x1b - Home screen	
0x11 - Home screen	
0x03 - Off	
0x18 - Off	
0x09 - Off	
0x13 - Off	
0x0a - Off	
0x1a - Off	
0x01 - Off	
0x07 - Lock screen	
0x17 - Lock screen	
0x0e - Calling	
0x5b - Home screen	
0x5a - Off	

That’s	enough	to	write	a	simple	packet	analyzer	that	allows	us	to	get	data	from	all	nearby	
Apple	devices	in	real-time.	

	

	
Video	Demo:	
https://www.youtube.com/watch?v=Bi602yAIBAw	

To	analyze	the	BLE	packets	further,	we	chose	to	use	Adafruit	Bluefruit	LE	Sniffer	that	helps	
analyze	the	Wireshark	BLE	traffic.	

Wi-Fi password sharing
Then,	we	analized	how	users	are	identified	when	two	devices	interact.	This	process	is	used	
for	conencting	to	Wi-Fi.	

	

	

While	trying	to	connect	to	a	network,	the	device	sends	the	following	BLE	packet:	

c03080fc5563125c9d087555a77e3e2005f10020b0c	

Trying	to	connect	to	various	SSID	on	different	devices	(yes,	we	could’ve	just	reversed	
sharingd	in	IDA/radare/gydra)	we	found	out	that	this	message	has	the	following	format:	

	

As	you	can	see,	the	device	sends	the	first	3	bytes	of	the	SHA256	hash	of	phone
number/email/appleID sha256(phone_number)[0:3]		

Probably,	devices	hash	all	contacts	and	then	compare	them	to	the	values	from	BLE	
messages,	and	in	case	there	is	a	match	offer	to	share	the	Wi-Fi	password	(if	they	have	it,	of	
course).	We’ll	look	into	this	process	in	more	detail	in	the	following	articles.	What	we	tried	
to	do	here	is	to	recover	a	phone	number	from	those	3	bytes	of	the	hash.	

First,	we	have	to	understand	phone	number	formats.	E.164	is	a	recommendation	
describing	various	formats.	

• A	phone	number	can	have	a	maximum	of	15	digits	
• And	it	can	be	divided	into:	

1. Country	code	(1-3	digits)	
2. National	destination	code	(NDC)	
3. Subscriber	number	

Of	course,	formats	vary	with	country,	but	the	idea	is	the	same.	So,	we	can	calculate	the	
values	of	SHA256	for	the	numbers	of	a	particular	city.	

<sha256[0:3]>:<phone_number>	

We	made	a	table	of	phone	numbers	for	a	city	with	a	population	of	about	5	000	000.	
Considering	the	large	number	of	subscribers,	collisions	are	inevitable.	In	average,	we	have	
a	collision	of	10-15	numbers	for	3	bytes	of	hash.	

We	made	an	API	for	quick	requests	to	the	table	to	get	a	number	from	a	hash:	

	

There	are	two	approaches	to	ensuring	the	accuracy	of	identification:		

1.	HLR	(Home	Location	Register)	Lookup	that	allows	identifying	inactive	subscribers	and	
subscribers	from	other	regions		

2.	A	number	must	be	associated	with	an	AppleID,	so	we	can	identify	valid	numbers	by	
checking	if	iMessage	is	available	for	a	certain	number	(we’ll	talk	about	this	approach	in	
more	details	in	the	future	articles).	

Combining	these	two	approaches,	we	can	accurately	identify	a	phone	number	in	almost	
100%	of	cases.	

Can	we	activate	the	Wi-Fi	password	sharing	popup	on	a	device?	That’s	an	open	issue.	

	

	

Thus,	we	have	a	script	that	identifies	the	users	connected	to	Wi-Fi.	

https://www.youtube.com/watch?v=kTtNX5Tmk3Q	

Moreover,	we	can	send	BLE	requests	for	a	Wi-Fi	password	hoping	that	the	victim	will	
provide	us,	for	example,	with	a	corporate	network	password.	We’ll	talk	about	this	vector	
more	in	our	other	articles	as	well.	By	the	way,	you	can	use	an	Android	app	(like	nRF	
Connect)	to	clone	and	repeat	different	BLE	messages.	

	

Airdrop
Let’s	see	if	this	mechanism	of	identifying	users	for	the	purpose	of	sharing	Wi-Fi	passwords	
is	universal.	Apple	Airdrop	is	one	of	the	points	we	can	investigate,	as	it	has	3	privacy	
options:	

1. Receiving	Off	
2. Contacts	Only	
3. Everyone	

So,	how	do	devices	identify	each	other?	

	

	

We	run	Airdrop	and	follow	the	BLE	sniffer:	

000000000000000001123412341234123400	

	

As	you	can	see,	in	this	case,	devices	sends	only	2	bytes	of	the	SHA256	hash,	which	is	enough	
to	identify	the	phone	number.	Traffic	analysis	showed	that	BLE	is	only	used	to	initiate	
AirDrop	transfer.	The	transfer	itself	happens	via	Wi-Fi	using	the	AWDL	technology	that	
establishes	a	peer2peer	connection	between	the	server	(receiver)	and	the	client	(sender).	
To	analyze	the	AWDL	packets,	we	can	use	Wireshark	and	the	awdl0	interface	available	on	
all	devices.	

	

As	you	see,	after	sending	a	few	MDNS	packets,	the	devices	exchange	their	certificates	and	
then	use	the	secure	TLS	connection	for	data	transfer.	We	were	about	to	begin	the	reverse	
engineering	of	the	sharingd	app,	which	is	responsible	for	AirDrop,	when	people	from	
Technische	Universität	Darmstadt	released	a	white	papper	A	Billion	Open	Interfaces	for	
Eve	and	Mallory:	MitM,	DoS,	and	Tracking	Attacks	on	iOS	and	macOS	Through	Apple	
Wireless	Direct	Link	about	AirDrop	(sadface.png).	This	white	paper	beautifully	describes	
the	functioning	of	AirDrop.	Now,	we’ll	take	a	brief	look	at	the	AirDrop	protocol	workflow:	

	

During	authentication,	the	device	sends	its	identification	data	(sender’s	record	data),	that	
contains	the	full	SHA256	hash	of	the	phone	number.	Thus,	if	we	answer	all	Airdrop	BLE	
requests,	we’ll	get	the	sender’s	contact	data,	including	phone	number	hash.	

We’ve	slightly	modified	the	opendrop	utility	to	do	that.	

Here	are	the	results:	

https://www.youtube.com/watch?v=mREIeH_s3z8	

Others
Below,	you	can	see	various	BLE	message	formats	that	we	encountered	during	our	research.	

Handoff
	

	

Airpods
	

	

By	sending	this	message,	we	can	make	Apple	devices	display	AirPods	inforamtion	as	if	they	
were	connected.	Just	watch	this	funny	video:	

https://www.youtube.com/watch?v=HoSuLUtrkXo	

Wi-Fi settings
	

	

Hotspot

	

	

PoCs

	

You can find all scripts in our GitHub repository: Apple bleee	

Links
• https://github.com/hexway/apple_bleee
• https://hexway.io/blog/apple-bleee/
• https://arxiv.org/pdf/1904.10600.pdf
• https://www.usenix.org/system/files/sec19fall_stute_prepub.pdf
• https://www.apple.com/business/site/docs/iOS_Security_Guide.pdf

	

	

	

	

	

	

	

	

Contact	us:			

contact@hexway.io	

https://hexway.io	

